UTILISATION DE LA FRÉQUENCE CARDIAQUE À L'ENTRAÎNEMENT

Jeannot AKAKPO
CESA

Unité émettrice (ceinture munie d'électrodes) Vantage NV (Polar NV) Options (gadgets ?)

Fréquence cardiaque

Recherche de la F.C. maximale réelle.

Évaluer de la F.C. cible pour un effort donné.

Travailler à une intensité optimale pour le développement d'une qualité physique.

Jeannot AKAKPO CESA/EMSP

Jeannot AKAKPO CESA/EMSP sd (Polar

Fréd	iuence	cardiad	aue
1100	acrice	cararac	146

Éviter de travailler à une F.C. trop élevée.

Évaluer le degré d'amélioration de la forme sportive en répertoriant la F.C. à une même intensité donné dans le temps.

> Jeannot AKAKPO CESA/EMSP

Fréquence cardiaque

Pour les entraînements d'endurance aérobie prolongée à une intensité constante, s'attendre à une augmentation de 5 à 10 bpm après environ 1 heure.

Fréquence cardiaque

Fréquence cardiaque maximale : estimation

220 - l'âge

ATTENTION À LA PRÉCISION

± 12 battements = ± 24 battements = ± 36 battements = 68% de la population 30% de la population 2% de la population

Les variations peuvent atteindre 20 bpm (Sykes et al., 1976; Washburn et Montoye, 1985)

Contrôle de l'intensité d'entraînement

Estimation de la fréquence cardiaque maximale

Tanaka et coll.

J Am Coll Cardiol 2001

(méta – analyse sur 312 études transversales, N = 18712 individus)

FCmax = 208 – 0.7 * âge

Gellish et coll.

Med Sci Sports Exerc 2007

(étude longitudinale de 25 ans, n = 132 individus)

FCmax = 207 – 0.7 * âge

Reproductibilité de la fréquence cardiaque

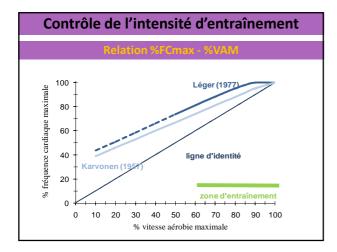
Les facteurs qui peuvent affecter la fréquence cardiaque sont :

Cycles circadiens
Cycles menstruels
Méthode de mesure
Température
Digestion
Altitude
Maladie

Deshydratation

Age, sexe, ethnie Bruit Posture Drogue

Alcool, tabac Thé, café


Monod. Ergonomics 1967; 10: 485-537

Fréquence cardiaque

Formule de Karvonen ou formule de la réserve cardiaque

(F.C.M.R. - F.C.R) x % souhaité + F.C.R. = F.C.C.

F.C.M.R. = Fréquence cardiaque maximale réelle.
F.C.R. = Fréquence cardiaque de repos.
% souhaité = en fonction de l'objectif
F.C.C. = Fréquence cardiaque cible

CARDIOFRÉQUENCEMÈTRE							
RELATION % F.C.M. avec % F.C.M. de réserve et % du VO2max							
% VO2max	% F.C. de réserve	% F.C. max					
50	50	66					
55	55	70					
60	60	74					
65	65	77					
70	70	81					
75	75	85					
80	80	88					
85	85	92					
90	90	96					

CARDIOFRÉQUENCEMÈTRE									
Zones de fréquences cardiaques									
Niveau d'entraînement		rception l'effort	Qualités fonctionnelles						
Zone 1	65-74%	1 à 2	Endurance (échauf./retour au						
Zone 2	75-84%	3 à 4	Endurance (entraînement						
Zone 3	85-91%	5 à 6	Endurance aérobie						
Zone 4	92-97%	7 à 8	PAM – VO2						
Zone 5	98-100%	9 à 10	PAM – VO2 et CL						

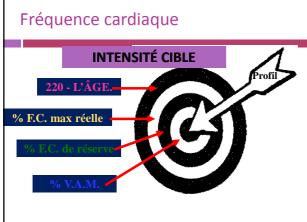
Contrôle de l'intensité d'entraînement

- □ Après une heure on a une augmentation de près de 10%
- □ L'augmentation est corrélée à l'augmentation de température
- □ Elle serait du une perte hydrique et une vasodilatation périphérique.
- □ Elle peut augmenter que de 5% si on s'hydrate correctement

Contrôle de l'intensité d'entraînement

La dérive cardiaque

Environnement contrôlé


La dérive de FC peut atteindre 15%

Environnement non contrôlé

- Déshydratation : la dérive de FC peut atteindre 7.5% (Saltin. J Appl Physiol 1964; 19: 1125-1132)
- Chaleur : la dérive de FC peut atteindre 25%
- (Gonzalez-Alonso et al. J Appl Physiol 1999; 86: 1032-1039
- Altitude : la dérive de FC peut atteindre 22%

La FC peut surestimer l'intensité métabolique de l'exercice (ajustement)

drup. Sports Med 2003; 33: 517-538)

CESA - AGFF 2015 5

_	,												
Ηt	9	a	ш	Δ	n		Ω	ca	rd	12	10	ш	IΑ
	_	ч	ч	_		·	_	Cu	ıu	10	40		4

La fréquence cardiaque cesse d'être un point de référence fiable pour estimer l'intensité d'un exercice de type aérobie au delà de 85 à 90% de la VMA.

.

Fréquence cardiaque

Effets de l'entraînement:

Aprés un cycle d'entraînement d'endurance aérobie, on peut s'attendre à diminuer l'intensité réelle de 6-7% pour une fréquence cardiaque cible.

La fréquence cardiaque à l'exercice

Effet de l'entraînement sur la relation fc – %VO₂max

Quels que soient :

- l'âge
- le niveau initial
- la capacité d'adaptation
 - La fc diminue avec l'entraînement pour une même intensité absolue
 - La fc est très stable à moyen terme pour une même intensité relative
 - Jusqu'à 90% VO₂max, le tapis de course et le vélo donnent le même profil.

Skinner et al. Med Sci Sports Exerc 2003 ; 35 : 1908-1913

Fréquence cardiaque

La FCmax sera moins élevée pour des exercices implicant les muscles des bras que pour des exercices impliquant les muscles des jambes.

Fréquence cardiaque

La FC max doit donc être déterminée de façon spécifique à l'activité sportive pratiquée par l'athlète.